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ABSTRACT: The introduced area ratio mode of operation
with its corresponding parameters seems to have a fairly
high sensitivity to the viscoelastic response of the solid
polymer. This appeared from the fact that a good distinction
among the linear viscoelastic, the nonlinear viscoelastic, and
the viscoplastic ranges of behavior can be made. By using a
relevant rheological modeling and its corresponding algo-
rithmical approach, in the case of isotactic polypropylene,
this material can be characterized as a morphological three-
phase material consisting of an intraspherulitic crystalline,
an amorphous phase, and a interspherulitic para-crystalline
phase. In this sense, the material was simulated using
two models: the Poynting-Thomson and the Maxwell-
Wierchert, from where a good response of the material to the

first model appeared. The so-called intrinsic “strain—clock”
function and its corresponding coefficient of strength of
nonlinear viscoelastic behavior, which were relieved by the
experimental data, seem to be some powerful and very
practical “tools” that can give a proven suplementary char-
acterization of the material. Finally, by this intrinsic func-
tion, the existence of permanent internal stresses, was con-
firmed, in an indirect way, which was mentioned in part II
of this study. © 2002 Wiley Periodicals, Inc. ] Appl Polym Sci 87:
149-158, 2003
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INTRODUCTION

The need for finding new ways and parameters for a
more practical but also a detailed as possible descrip-
tion (characterization) of the viscoelastic behavior of a
polymeric solid is known and obvious, and its impor-
tant significance was described, in general, in parts I
and II of this study. In these two parts, it was shown
that the principles of the introduced operational
modes and parameters, such as, for example, the “vir-
tual modulus” and the “intrinsic time-strain clock”
function, were developed based on some already-
known very general principles, like those concerning
the “vertical shift” but also the relaxation moduli. In
the present part III of this investigation, further at-
tempts were made to introduce and prove a new
mode of operation, the principle of which is not based
on any of the previously known general assumptions
presented in parts I and II of this study. In this way,
some corresponding parameters arise which can de-
scribe and interpret, in some detail, some viscoelastic
characteristics of the polymeric solids. Of course, var-
ious basic known “facts,” which were used in the
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mathematical modeling and the algorithmic ap-
proaches of this study, were based on the Poynting—
Thomson body (model), which belongs to the so-
called third-generation rheological bodies' and which
was first proposed by Poynting and Thomson in 1929
to explain the behavior of glass-fibers. (Later, Zener
named this body a “standard linear solid”.) Based on
the above-mentioned body but also on a “second-
generation body,”" that is, the so-called Maxwell body
expressed by a multielemental model, we tried to
approach the real body (polymeric solid), which, in
our case, was isotactic polypropylene (iPP).

THEORETICAL CONSIDERATIONS AND
MODELING

Principle of the area ratio mode

Taking into consideration the scheme in Figure 1, we
can obtain the general relationship
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Figure 1 Scheme of the stress relaxation “areas ratio” op-
erative mode.

t
ootr — J o(t) dt
Area CAD B 0
Area CABO ootr

t
j o(t) dt
Area CDBO 0

Area CABO oy,

(1a)

where t, is a reference observation time.

Now, taking into the consideration this relation, we
can introduce, formally, the following specific param-
eters:

R+ =1 (1a)
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from which

oot, — J“’ o(t) dt
R, = . )

oo,

and

Op* tV
Ri=——— 3)

fﬁ o(t) dt

R, and R; are both functions of time ¢, and will be
defined in the following text.

Relation (1a) reminds one of a similar one in ther-
modynamics, concerning the Carnot “machine” phe-
nomenon and which can be written as follows:

1
T @
where m describes the “machine’s” efficiency and the
ratio T,/T, expresses, in a certain way, a kind of
“thermal gradient” or “potential” of the Carnot phe-
nomenon. Consequently, the relations 1(a) and (4)
have some common notions, such as:

When T,/T, — <, it must be n — 1 and, similarly,
when R; — o, it must be R, — 1. Also, when T,/T,
— 1, it must be n — 0 and, similarly, when R; — 1,
it must be R, — 0.

Now, taking into consideration the above state-
ments, we can make the following formalistic corre-
spondence: R, — n and R; — T,/T,. In this sense, we
can define the parameter R, as a specific relaxation
efficiency (SRE) and R; as a specific relaxation poten-
tial or intensity (SRI).

In other words, relation (1a) could be interpreted as
follows: If for a given t, the relaxation potential (in-
tensity) is “infinite,” then the relaxation efficiency
tends to be a maximum equal to 1 (unit), meaning that
we have a perfect 100% “output” of events, that is, an
“infinite” number of molecular rearrangements can
take place. But if the relaxation potential is a minimum
of 1 (unit), then the relaxation efficiency becomes
“zero,” which means that no molecular rearrange-
ments can take place.

Yet, relation (la) can be written as R, + R; = 1,
where R, is now a so-called specific “deficiency” of the
relaxation phenomenon. We can make some further
interpretations by putting R, = R,/t, as an equivalent
(specific) efficiency rate and R; = R;/t, as an equiva-



NEW MODES AND PARAMETERS OF STRESS RELAXATION. III 151

l(':0(00)

(<)

T
>

Figure 2 (a) Scheme of the Maxwell-Wierhert body (mul-
tielemental Maxwell model). (b) Scheme of the general
Poynting-Thomson body (multielemental standard solid
model). (c) Scheme of the effective Maxwelian “step func-
tion.”

lent specific intensity rate. In this case, the general eq.
(1a) becomes

—_
1
—_

.1
t,Re-l—t——:l or trRe+?ti=1 (5)
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where f; = 1/R; is now a operational “specific relax-
ation time,” during which, for a given potential or
intensity of molecular motions, only certain molecular
rearrangements take place. From the above defini-
tions, it can be deduced that both R,(R,) and R,(R)) are
a kind of effective measure for the stress-relaxation
rate of the polymeric solid.

Basic functional relations

As was already mentioned and is well known, the
behavior of a material in stress relaxation is ap-
proached better by a multielemental model with Max-
well elements in parallel formation [Fig. 2(a)]. Thus, a
Maxwell element in relaxation is given by

né(t, ) = oo(t) (6)

where £, is the strain rate (creep rate); oy(t), the time
function of stress with the initial value o, which cor-
responds to the initial constant deformation &, and 7,
= 7n/E, the characteristic relaxation time. Therefore,
for a given observation reference time ¢t,, we have

n f Y &(t, 7)dt = J ' o(t) dt

= nlel (1) = e(19)] = me(7y)  (6a)

where £)(r,) is the reference deformation for t = t,
and £9(7,) = 0 for t = 0. Considering relation (2) and
taking into consideration eq. (6a), we have

_ oot, — "’JSEY)(TO) _ Egot, — nsy)(To)

¢ oot, - Eet,
o= (2] [sﬁ”vro)]
0 E tr &y — Toéc
= o = e (6b)

where 7,8, = gy, and &, is an average effective defor-
mation with &, = (7)) /t,.

For a model with several “n” parallel Maxwell ele-
ments, that is, for a general Maxwell model or a Max-
well-Wiechert body,2 as shown in Figure 2(a), we
obtain

n

o(t) = E oi(t) = E Mi€i(t, Toi) (6¢c)

i=1 i=1

and after integration

(6d)

t n t, n
J o(t) dt = E J Niailt, 7o) = 2 nisg)(TOi)
0 0

i=1 i=1

Therefore, relation (6b) gives

n n
E Eigot, — E "'7;'85;)(701')
i=1

n
&0 — E Toiei
R i=1 i=1 7
e " - £ ( )
2 EiSOtr
i=1

where %,; = 1,/ E is an effective relaxation time, E = 3
E, is an effective spring modulus, and &, = (7, /t,
is an average effective deformation of a Maxwell ele-

ment. By writing eq. (7) in another form as follows:
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we can define My; = 7,&, as an effective Maxwell

element and M, as an effective Maxwell body. Expres-
sion (3) takes now the form

e e €
R, = o % _ ~° (8a)
n ~ ~ n - M
E Toi€ci E M, 0
i=1

i=1

Next, the analytical expression for the effective
Maxwell element My; can be determined by

o,(t) = Eggre /™

which, by integration, gives

1 (" —Egorole”™];
— oi(t) dt = Bl ——
i 0 Ni

Eiggro1 — e~/ ™]

" = e (1) )
which leads to
e (to) = go[1 —e™"'™] (9a)
Therefore,
Moy = Fois = so[1 — e"/™] %to",
where %, = e Toi 5 = 'TOiEi (9b)
E E

Thus, for the effective Maxwell element, we have the
general expression

My, = 1iyE; (9¢)
with

- Toi
My = go[1 — e /] tl

(94d)

r

where 171, is an effective Maxwell relaxation unit, and

E, an effective “Maxwellian” spring distribution pa-
rameter.

For a model with infinite Maxwell elements, where
the distribution of the elements with the correspond-
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ing relaxation time becomes continuous, the following
expression can be written:

]%=hmzﬁh=?f[kw”@mﬂm (10)

n—w ._
i=1 0

where the Maxwellian spring parameter £, is replaced
by a density or weighting function g(7)dr, which de-
fines the distribution or the concentration of the Max-
well elemental units m(7) = (1 — e~ /") with relax-
ation times between 7 and 7 + dr. With this definition,
eq. (10) for the effective Maxwell body gives

MO =% J”" m(7)g(7) dr (10a)

t
0

Now, we apply to the above relations the Alfrey ap-
proximation procedure, which means that we must
have the step function

for v>t, m(n=1

7<t, m(r)=0 (10b)
The above approximation is valid due to the shape of
m(7) [Fig. 2(c)], because it can be seen that

m(r=0)=0 and m(r = ©)=1 (10¢)
Therefore, after application of Alfrey’s approximation,
by relation (10a), we have

t) * €y "
MOET g(T) dT:?g(tr) (11)
t

r

In the first instance in the above integral, we can
make two kinds of approximations. It is known that
the relaxation spectrum can be often approximated by
some relevant “box”-type distributions similar to
those given in refs. 3 and 4 or, more generally, to those
discussed in part I of this study. Thus, we would not
make considerable errors if we would assume such a
distribution for the function g(7). Then, for conve-
niently “small” times t,, we can assume, with some
sufficient approximation,

f yﬂdTEjygﬂdT+fT g(7)

r

*JT mg(v) dr=g(t,) =~ const =C (11a)

r
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that is, the integral must change very slowly with the
observation time t,. The second kind of approximation
is simply to assume that §(t,) is not constant and,
therefore, §(t,) = f(t,), that is, it is a much stronger
function of f,. Under these conditions, the relations
(8a), (11), and (11a) give

) 1
[oor g8t =E (2

with

golt) = fit,) or gt)=C
Analogous relationships can be obtained for R, and R,
as well from relation (8).

General Poynting-Thomson-type model (body)

This general body model is constructed by several
Poynting-Thomson parallel units, where a Poynting—
Thomson unit is constructed by a Maxwell element
and a Hookean spring in parallel [see Fig. 2(b)]. For a
Poynting-Thomson wunit in relaxation, it can be
proved' that

o () oy(0) + 7,,(0)e /™ (13)

where 0,(0) is the initial stress of spring “h”
(“Hookean” one), and o;,,(0), the initial stress of spring
“m” (“Maxwellian” one). The elements of this Poyn-
ting-Thomson model may be strain-dependent, hav-
ing a general nonlinear type model.

Following the same procedure as in the previous
paragraph by taking into consideration the elementary
contribution of the dashpot creep deformation and
elastic spring one, we have

2 [80(Emi + E)t, — ﬂng) - Ehis()tr]
i=1
R, (14)
E 8O[Ehi + Emi]tr

i=1

n
&) — (2 Foigei + 2, Ei;ﬁo)
i=1 i=1

€o

where

with E, E,; + E,;and &, £,/t,, and E;, E,;/E; “Hookean”
spring distribution parameters. Also, after summation of
the elementary dashpot creep and elastic spring defor-
mations, we obtain

n n tr
2 [Tlis(c;) + Ehisotr] E f O'i(t) dt
i=1 i=1 0

1/R, ,
2 80(E11i + Emi)tr E Eieotr
i=1

i=1

with EE, +E,; (15)

Integration of the Eq. (13) gives
tV
J oi(t) dtay(0)t, + 7, (0)To[1 — e/™] (16)
0

Comparison of Egs. (15) and (16) gives
;e 0i(0) o[ 1 — 7"/ ™] (17)

which leads to
Toi )
82:‘) = E,igo ? [1—e /™ =gyl — e "/™) (17a)

This relation has the same form with eq. (9a). There-
fore, eq. (15) can be modified using the Maxwell ef-
fective unit as follows:

1/R1 = 2 MO[/SO + 2 Ehi (18)

i=1 i=1
where

~ & Emi =~
— —ty/ T0i — 15
My, = [1—e /To]TOi = = MMoEin
t, E;

where E;, = E,.,/E; is an Maxwellian spring distribu-
tion parameter.

Thus, for a continuous set of relaxation times 7,; and
also for a distribution with an infinite number of ef-
fective Maxwell elements and Hookean springs and
after applying the same approximation procedures
given by egs. (10) and (11), we obtain from eq. (18), by
taking n — oo,
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c co= M
1/R1:2M0i/80+2Ehi:?;

i=1 i=1

+ f Caim =3

+&(t) (19)

and, hence, as in the case of egs. (12), we have the two
basic operational parameters:

R,=1/R,= g[’t(t) + g.(t,) (20)
with
Sot) = fo(t) or gt) =G
and & (t)=fit) or &(t)=C
or
t=1/R; = go(t,) + §:(t)t, (20a)
with

go(tr) :fO(tr) or go(tr) = Co
and &) =f(t) or &(t)=C

where §y(t,) and g,(t,) have the same notions given for
the interpretation of eq. (12). [Analogous relations can
be extracted for R, and R, as well from eq. (14).]

EXPERIMENTAL

Particular knowledge of certain constructive parame-
ters on every polymer material, other than general
properties and definition, is required before the mate-
rial enters the experimental stages. Some of these pa-
rameters, like the melt-flow index, the molecular mass
and weight distribution, and the heterogeneity index
(M,,, M, D) can be found in parts I and II of this study.
Isotropic materials were obtained at 150°C from com-
pression-molded sheets with a thickness of 0.30 cm.
The sheets were cooled afterward at room tempera-
ture. From these sheets, dog-bone specimens were cut
which were tested in stress relaxation. All the stress-
relaxation experiments were made at room tempera-
ture and at a constant strain rate ~10”2/s using an
Instron-type machine.

RESULTS AND DISCUSSION

Figure 3 gives the experimental path of the curve for
R,, that is, the equivalent efficiency rate in relation to
the loading grade 0,/ 0,, for three materials. In Figure
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Figure 3 Experimental data of the equivalent specific, effi-
ciency rate, R,, for (a) quenched iPP, (b) annealed iPP, (c)
epoxy resin with 70% plasticizer, and (d) Lexan.

(4) appears the path of the experimental curve for R,
that is, for the equivalent intensity rate, for three ma-
terials. From these two figures, we can observe that
the curve presents two or even three different slopes,
which can be explained by the existence of corre-
sponding two or three basic types of kinetic behavior:
the linear elastic, the nonlinear elastic, and the visco-
plastic.

Especially for PP, we observe that, for the annealed
state, there is a relative “delay” as to the onset of the
viscoplastic response, compared with the quenched
state. This is consistent with the fact that the annealing
process increases the molecular packing density,
which tends to inhibit the viscoplastic or viscous flow
in the material. In the case of epoxy resin, it appears
only as a “linear” behavior for the loading imposed
(09/0p < 0.5). From the above two figures, we can
further argue that Lexan has the lowest relaxation
rates, whereas PP has the highest. Plasticized epoxy
resin has an intermediate rate, however, closer to that
of PP.

In Figures 5 and 6, the “classical,” that is, the rela-
tive or the reduced stress-relaxation, curves for the
same materials are given. Thus, in the first figure,
curves only for quenched PP and for various loading
grades are given, whereas in the second figure, the
curves for all the other materials but for one loading
grade are given. Thus, from these figures, the relative
weak response of the nonlinear behavior is evident
when the loading grades increase, without having the
possibility of separation in two or even three ranges of
behavior, as became apparent in the curves of Figures
3 and 4 by means of the two “equivalent rates” (R; and
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Figure 4 Experimental data of the equivalent specific in-
tensity rate, R;, for (a) iPP, (b) epoxy resin (70% plasticizer),
and (c) Lexan.

R,). As stated, this is very well evident for the example
in the case of quenched and annealed PP from Figure
3, where we see a clear distinction, whereas from
Figure 5, this behavior cannot be extracted. So, we can
conclude that the response sensitivity of the “classi-
cal” relaxation test (Figs. 5 and 6) is clearly lower than
that for the curves of Figure 4 which concern the new
technique.

However, some of the most important results of this
work are “hidden” in the measurements of Figure 7,
where the experimental evidence of eq. (20a), that is,
of the proposed “specific relaxation time,” f; in rela-
tion to the reference observation time, t,, for various
strains is given. As previously stated, this proposed
time can be regarded as a operative time, according to
which, for a given potential (intensity) of internal mo-
lecular motion, only a certain number of molecular
rearrangements and phenomena are conducted. In
this context, we observe that the general trend of this
evidence is expressed by parallel lines which are
shifted to higher operative times as strain increases,

which means that a higher number of rearrangements
can take place. The slope §,(t,) of the lines is constant
and we can evaluate it to about 0.85.

The above general trend in Figure 7 becomes more
apparent in another manner from Figure 8, where the
plot of the experimental curve of eq. (20), that is, the
so-called specific “deficiency” R, with a satisfactory
response is given. In this sense, for ¢, — %, the exper-
imental curves cut the ordinate at R; = §; ~ 0.9. In
contrast to these findings, the measurements of Fig-
ures 7 and 8 by no means can be approached by the
relations (12), which express the Maxwell-Wiechert
body and which means that this body cannot be sim-
ulated by experiment.

A further result related to the experimental mea-
surements given in Figures 7 and 8 is the above-stated
evidence that g,(t,) = const = C, ~ 0.85, a fact that
justifies the approaches made in the relationships
given by egs. (11a), but also the assumptions related to
them: that the spectral distributions of the Maxwellian
springs and of the whole viscoelastic body are similar,
that is, are of box type. In this sense, we may further

1.0\\
\
\ Cl
b
C
S
. 0.5
<)
o}
O 1 ] '
1.0 20 30

t(min)

Figure 5 Experimental curves of the (classical) stress-relax-
ation test for quenched iPP and for some degrees of loading
0o/ 0a: (@) 0p/ Ty = 0.2; (b) 09/ 0 = 0.4; () 05/ 04 =~ 0.6.
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Figure 6 Experimental curves of the (classical) stress-relax-
ation test for (a) Lexan, (b) epoxy resin (70% plasticizer), (c)
annealed iPP, (d) quenched iPP, and (e) stretched up to &,
~ 12% and quenched iPP.

judge that, as a further approximation of the condition
given in eq. (11a), one can take a very long, but finite
time of integration and assume a very slow time-
changing function, g(t,), which leads to the supple-
mentary condition of the relation given by eq. (11a):

T=t>t,
f g dr=3(t)=at,+ p= C = const (21)
t

r

where the slope |a| < 1. (Relation 21 express a nearly
parallel line to the time axis.)

From the above relationship, it can be assumed that
the spectral distribution (density) g(7) =~ B = const is
consistent with the experimental data from parts I and
II of this study in the example of iPP, which assumes
a spectral box-type distribution for the given experi-
mental observation times. In other words, this means
that, if the approximations and assumptions made in
the relationships given by egs. (11a) and (21) are valid,
the “partial elastic body” represented only by the
Maxwellian and Hookean springs has a similar box-
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form distribution with those of the whole viscoelastic
body.

Concerning the found value for the constant C,
~ (.85, we can try to make the following approach: By
admiting a relevant average experimental error of
+15%, we could put C; ~ 1 + 0.15 as the “true”
experimental value. This now leads to the assumption
that [§ g1(7) dr = 1, which means that the spectral
distribution function g;(7) for the Hookean springs
could be normalized to unity.” In this case, the func-
tion g(7) might be interpreted in other words as a
“probability density” for the “existence” of a Hookean
spring during the relaxation time dr. Normalization to
unity means now that, for time starting from zero to
“infinity,” the probability to “find” any one of these
springs is 1, that is, 100%. The above assumptions
should not be made for the function gy(7), which gives
a distribution density for the Maxwellian springs. This
function seems to be strain-dependent [eq. (20) and
Fig. 7), that is, it is concerned with the nonlinear
behavior of the solid and, as such, it cannot be nor-
malizidet to unity.’

Another basic result can be extracted from Figure 7.
Thus, from the intersection values of the abscissas
with the ordinate axis (for ¢, — 0) for various procen-
tual strains &, we found an approximate linear rela-
tion which may represent, at the same time, a kind of
intrinsic “strain—clock” function:

Ei = 60(80) ~Agy+ B (22)

with A = 2 and B =~ —3. This means that for ¢, — 0 we
must have a “negative” specific relaxation time or a
fictive distribution, which may be attributed to the
existence of some residual or permanent internal
stresses. The existence of such stresses is experimen-
tally confirmed through previously carried out tests,
for example, of refs. 6-8, but also through those car-
ried out by the authors in part II of this investigation.
Consequently, according to all these, we can say that
the results have been confirmed, by an indirect way,
of, for example, ref. 6, where the stress-relaxation ki-
netics is controlled by the initial effective stress o = oy
— 0;, where o; is the internal stress, and o, the actual
initial one. In this context for o, = 0 (or g, = 0), we
obtain a “negative” internal stress, which leads to a
“negative” (fictive) spectral distribution.

Another significant parameter of eq. (22) is the co-
efficient A, which can be seen as a measure of the
strength of the nonlinear viscoelastic behavior of this
material. Furthermore, from this relation, it can be
judged that an intrinsic “strain—clock” must begin to
work by giving the nonlinearity strength, A, and this
happens only for C,(g,) = 0, that is, for an initial strain
€y greater about 1.5%. This value is very close to 1%,
which is generally accepted as a conventional one for
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Figure 7 Experimental data plot of the operative specific time, f, in function of the reference observation time t, and the

applied strain &,,.

the distinction between linear and nonlinear viscoelas-
tic behavior.”

As a general basic result, it can be stated, in closure,
we had a rather quite positive experimental response
of the Poynting-Thomson model [relations (20) and
(20a)] compared to the Maxwell-Wiechert model [re-
lations (12)], which did not respond. Also, this, in
general, means that the Poynting-Thomson model
better reflects the microstructure and the morphology
of PP. In this sense, in this model, the Hookean “soft”
springs reflect the amorphous region behavior be-
tween the spherulites (interspherulitic connections),
regions which remain “stressed,” without relaxing at
all, while the Maxwellian “hard” springs reflect the
behavior of intraspherulitic crystalline regions (fold-
ed-chain lamellae), and the dashpot, the behavior of
the amorphous intraspherulitic regions. Conse-
quently, it seems that a three-phase model is well
simulated and consistent with the dynamic mechani-
cal analysis, showing three maxima of the relaxation
spectra: at 60°C, which corresponds to the crystalline
phase; at 5°C, which corresponds to the glass transi-
tion of the amorphous phase; and at —70°C, which
corresponds to the para-crystalline phase between
spherulites.'”

CONCLUSIONS

In this article, an effort was made to introduce, in a
modus operandi way, some effective and practical pa-

rameters to characterize the linear and nonlinear vis-
coelastic behavior of solid polymers using the example
of (iPP). Depending on the way used and its corre-
sponding parameters, this effort has shown the fol-
lowing;:

(a) The so-called relaxation areas ratio mode, ex-
pressed by its corresponding specific rate pa-
rameters, seems to be quite sensitive as far as
detecting the linear and nonlinear viscoelastic
and viscoplastic behavior are concerned.

(b) With the contribution of the previously pro-
posed mode, as well as with the implementa-
tion of a relevant, theoretical modeling and its
algorithmic approach, it was experimentally
proved that iPP behaves quite satisfactorily ac-
cording to the Poynting-Thomson’s-type rheo-
logical model. This relative good correlation of
experiment and theory is based on the almost
“perfect” simulation of this rheological model
with the three-phase molecular morphology of
iPP.

(c) From the analysis of the experimental data, the
evidence of a so-called intrinsic strain-clock
function and its corresponding coefficient of
strength of nonlinear viscoelastic behavior can
be stated.

(d) At the same time, using this function given by
the specific relaxation time parameter, a consis-
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Figure 8 Experimental data plot for the specific deficiency, R, in function of applied strain &, and reference observation

time f,.

tency with the evidence of the permanent inter- 4.

nal stresses is established.
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